Widespread Increases in Malondialdehyde Immunoreactivity in Dopamine-Rich and Dopamine-Poor Regions of Rat Brain Following Multiple, High Doses of Methamphetamine

نویسندگان

  • Kristen A. Horner
  • Yamiece E. Gilbert
  • Susan D. Cline
چکیده

Treatment with multiple high doses of methamphetamine (METH) can induce oxidative damage, including dopamine (DA)-mediated reactive oxygen species (ROS) formation, which may contribute to the neurotoxic damage of monoamine neurons and long-term depletion of DA in the caudate putamen (CPu) and substantia nigra pars compacta (SNpc). Malondialdehyde (MDA), a product of lipid peroxidation by ROS, is commonly used as a marker of oxidative damage and treatment with multiple high doses of METH increases MDA reactivity in the CPu of humans and experimental animals. Recent data indicate that MDA itself may contribute to the destruction of DA neurons, as MDA causes the accumulation of toxic intermediates of DA metabolism via its chemical modification of the enzymes necessary for the breakdown of DA. However, it has been shown that in human METH abusers there is also increased MDA reactivity in the frontal cortex, which receives relatively fewer DA afferents than the CPu. These data suggest that METH may induce neuronal damage regardless of the regional density of DA or origin of DA input. The goal of the current study was to examine the modification of proteins by MDA in the DA-rich nigrostriatal and mesoaccumbal systems, as well as the less DA-dense cortex and hippocampus following a neurotoxic regimen of METH treatment. Animals were treated with METH (10 mg/kg) every 2 h for 6 h, sacrificed 1 week later, and examined using immunocytochemistry for changes in MDA-adducted proteins. Multiple, high doses of METH significantly increased MDA immunoreactivity (MDA-ir) in the CPu, SNpc, cortex, and hippocampus. Multiple METH administration also increased MDA-ir in the ventral tegmental area and nucleus accumbens. Our data indicate that multiple METH treatment can induce persistent and widespread neuronal damage that may not necessarily be limited to the nigrostriatal DA system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-lasting depletions of striatal dopamine and loss of dopamine uptake sites following repeated administration of methamphetamine.

Repeated administration of high doses of methamphetamine produced long-term decreases in dopamine (DA) levels and in the number of DA uptake sites in the rat striatum. These two effects were dose-related and did not appear to be due to the continued presence of drug in striatal tissue. Long-lasting depletions induced by methamphetamine were selective for striatal DA neurons since norepinephrine...

متن کامل

Levels of 4-hydroxynonenal and malondialdehyde are increased in brain of human chronic users of methamphetamine.

Animal studies suggest that the widely used psychostimulant drug methamphetamine (MA) can harm brain dopamine neurones, possibly by causing oxidative damage. However, evidence of oxidative damage in brain of human MA users is lacking. We tested the hypothesis that levels of two "gold standard" products generated from lipid peroxidation, 4-hydroxynonenal (one of the most reactive lipid peroxidat...

متن کامل

EFFECTS OF CATECHOLAMINES ON DOPAMINE AND SEROTONIN SYNTHESIS IN RAT BRAIN STRIATAL SYNAPTOSOMES: THE ROLE OF PRESYNAPTIC RECEPTORS AND THE SYNAPTOSOMAL REUPTAKE MECHANISM.

The regulation of dopamine and serotonin synthesis in rat brain striatal synaptosomes has been studied using HPLC methods. Noradrenaline was shown to markedly inhibit both the synthesis of dopamine and serotonin. The response of the synaptosomes to the concentrations of noradrenaline appeared to be biphasic, a very effective inhibition occurring at low concentrations (1-5 µm) and a relativ...

متن کامل

Single and Binge Methamphetamine Administrations Have Different Effects on the Levels of Dopamine D2 Autoreceptor and Dopamine Transporter in Rat Striatum

Methamphetamine (METH) is a central nervous system psychostimulant with a high potential for abuse. At high doses, METH causes a selective degeneration of dopaminergic terminals in the striatum. Dopamine D2 receptor antagonists and dopamine transporter (DAT) inhibitors protect against neurotoxicity of the drug by decreasing intracellular dopamine content and, consequently, dopamine autoxidation...

متن کامل

Alterations in vesicular dopamine uptake contribute to tolerance to the neurotoxic effects of methamphetamine.

Previous studies demonstrated that tolerance to the long-term neurotoxic effects of methamphetamine on dopamine neurons could be induced by pretreating with multiple injections of escalating doses of methamphetamine. The mechanism(s) underlying this tolerance phenomenon is unknown. Some recent studies suggested that aberrant vesicular monoamine transporter-2 (VMAT-2) and dopamine transporter fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2011